Abstract
Elastic strain has been investigated by transmission electron microscopy in nanometric InAs layers grown on Ga 0.47In 0.53As/InP(0 0 1) by molecular beam epitaxy using a residual Sb flux. Deposits of 10 and 15 monolayers of InAs (3 and 4.5 nm) remain elastically stressed with a two-dimensional growth mode. The out-of-plane strain in the layers is analyzed by cross-sectional high-resolution electron microscopy. A distortion of the substrate below and on top of the InAs layers is detected and is attributed to a significant surface relaxation effect due to thinning. Surface relaxation is modeled by three-dimensional finite element modeling. An additional relaxation effect is obtained when the sample is not infinite along the direction perpendicular to the thinning. This effect enhances the buffer distortion of the buffers below and on top of the strained layers. Taking into account thin foil effects, the experimental out-of-plane strain is in excellent agreement with the theoretical value calculated for a pure InAs layer (i.e. 0.035), demonstrating the high level of strain and stress in the layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.