Abstract
This paper discusses side acoustic radiation in leaky surface acoustic wave (LSAW) resonators on rotated Y-cut lithium tantalite substrates. The mechanism behind side radiation, which causes a large insertion loss, is analyzed by using the scalar potential theory. This analysis reveals that side radiation occurs when the guiding condition is not satisfied, and the LSAW most strongly radiates at the frequency in which the LSAW velocities in the grating and busbar regions approximately correspond to each other. Based on these results, we propose a "narrow finger structure," which satisfies the guiding condition and drastically suppresses the side radiation. Experiments show that the resonance Q of the proposed structure drastically improves to over 1000 by suppressing the side radiation, which is three times higher than for a conventional structure. Applying the proposed resonators to the ladder-type SAW filters, ultra-low-loss and steep cut-off characteristics are achieved in the range of 800 MHz and 1.9 GHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.