Abstract

Understanding and predicting Taste and Odour events is as difficult as critical for drinking water treatment plants. Following a number of events in recent years, a comprehensive statistical analysis of data from Lake Tingalpa (Queensland, Australia) was conducted. Historical manual sampling data, as well as data remotely collected by a vertical profiler, were collected; regression analysis and self-organising maps were the used to determine correlations between Taste and Odour compounds and potential input variables. Results showed that the predominant Taste and Odour compound was geosmin. Although one of the main predictors was the occurrence of cyanobacteria blooms, it was noticed that the cyanobacteria species was also critical. Additionally, water temperature, reservoir volume and oxidised nitrogen availability, were key inputs determining the occurrence and magnitude of the geosmin peak events. Based on the results of the statistical analysis, a predictive regression model was developed to provide indications on the potential occurrence, and magnitude, of peaks in geosmin concentration. Additionally, it was found that the blue green algae probe of the lake’s vertical profiler has the potential to be used as one of the inputs for an automated geosmin early warning system.

Highlights

  • The detection of Taste and Odour (T&O) compounds, such as geosmin or 2-methylisoborneol (MIB), can compromise the organoleptic quality of the water and divert consumers from its use despite not presenting any health-related risk

  • The human detection threshold can largely change from one individual to another [1], geosmin concentrations as low as 5 ng/L are detectable [2]

  • Understanding and modelling T&O compounds is a priority for water utilities, in order to produce treated water with high organoleptic quality and enhance the confidence and reliance of the consumers towards the drinking water supply system

Read more

Summary

Introduction

The detection of Taste and Odour (T&O) compounds, such as geosmin or 2-methylisoborneol (MIB), can compromise the organoleptic quality of the water and divert consumers from its use despite not presenting any health-related risk. Understanding and modelling T&O compounds is a priority for water utilities, in order to produce treated water with high organoleptic quality and enhance the confidence and reliance of the consumers towards the drinking water supply system. Modelling geosmin and other T&O compounds is extremely challenging, as the reasons for the appearance of these compounds are still largely unknown [3,4,5]. A number of models have been developed which, for a specific lake, can predict geosmin concentrations with acceptable accuracy based on water quality (e.g., [1,7,8,9,10])

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.