Abstract
<sec>High-order photon correlations of light fields are important for characterizing the quantum nature. Since Hanbury Brown and Twiss conducted the pioneering experiments in the 1950s, the HBT effect has inspired extensive research on high-order photon correlation in quantum optics, quantum information, and quantum imaging. The Single-photon counting module is one of the most widely used single-photon detectors. Due to its high detection efficiency and low dark counts in the visible and near-infrared region, it is reasonably chosen for basic research on quantum mechanics. Many researches have demonstrated that the maximum value of second-order photon correlation <i>g</i><sup>(2)</sup>(<i>τ</i>) at zero delay (<i>τ</i> = 0) can be used to distinguish different light fields. Therefore, the HBT scheme containing two single photon detectors have been widely used in many advanced studies, such as space interference, ghost imaging, single photon detection with high efficiency, etc. However, higher-order photon correlations <i>g</i><sup>(<i>n</i>)</sup> (<i>n</i> > 2) can reveal more measurable characteristics of light fields, such as information about the non-Gaussian scattering process, the skewness and kurtosis of photon number distribution, etc. When the extended HBT scheme is used to measure higher-order photon correlations, the experimental conditions including quantum efficiency and background noise greatly affect the photon correlation measurement. The influences of the counting rate and resolution time of the detection system on the measurements are also very important and cannot be ignored. Therefore, the comprehensive considering of various influence factors is necessary for accurately measuring the high-order photon correlations and also a challenge.</sec><sec>In this paper, we present a method based on double Hanbury Brown-Twiss scheme for the accurate measuring of high-order photon correlations <i>g</i><sup>(<i>n</i>)</sup> (<i>n</i> > 2). The system consists of four single photon counting modules and is used to detect and analyze the joint distribution probability of temporal photon correlation. Considering the effects of the background noise and overall efficiency, theoretically, we analyze the correlations of the third- and fourth-order photon with the incident light intensity, squeezing parameter and photon number respectively for thermal state, coherent state, squeezed vacuum state, and Fock state. Meanwhile, experimentally we study the influences of resolution time and counting rate on correlations of the coherent state and thermal state with third- and fourth-order photon. On condition that the resolution time is 2<sup>10</sup> ns and the counting rate is 80 kc/s, the correlations of third and fourth-order photon with the thermal state at zero time delay are accurately measured, and the relative statistical deviations of the measured vales from the theoretical values are 0.3% and 0.8%, respectively. In addition, the third- and fourth-order photon correlations of the thermal state at different delay times are also observed. It is demonstrated that the high-order photon correlations of light fields are measured accurately by comprehensively analyzing various influencing factors. This technique provides a promising and useful tool to investigate quantum correlated imaging and quantum coherence of light fields.</sec>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.