Abstract
Abstract This paper studies the fractal-like behavior exhibited by the complex form of Gaussian chaotic map and the capability of digital architectures to mimic that behavior. Digitally realized chaotic attractors had many applications; hopefully, a digital realization of fractals may achieve the same eventually. The Gauss map is viewed concerning its bifurcation behavior, time waveform plots, Lyapunov exponent, and attractor performance through parameter variation. The Fractal-like entities emerging from the perceived complex map are examined versus different map coefficients for the highest chaotic periods to extract an interpretation for the fractal behavior. FPGA implementation of the fractal behavior is discussed viewing an optimized hardware architecture that eventually displays a fractal entity experimentally.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.