Abstract
Increasing levels of wind energy in modern electrical power system is initiating a need for accurate analysis and estimation of transient stability of wind turbine generation systems. This paper investigates the transient behaviors and possible direct methods for transient stability evaluation of a grid-connected wind turbine with squirrel cage induction generator (SCIG). Firstly, by using an equivalent lump mass method, a three-mass wind turbine equivalent model is proposed considering both the blades and the shaft flexibility of the wind turbine drive train system. Combined with the detailed electromagnetic transient models of a SCIG, the transient behaviors of the wind turbine generation system during a three-phase fault are simulated and compared with the traditional models. Secondly, in order to quickly estimate the transient stability limit of the wind turbine generation system, a direct method based on normal form theory is proposed. The transient models of the wind turbine generation system including the flexible drive train model are derived based on the direct transient stability estimation method. A method of critical clearing time (CCT) calculation is developed for the transient stability estimation of the wind turbine generation system. Finally, the CCT at various initial mechanical torques for different dynamical models are calculated and compared with the trial and error method by simulation, when the SCIG stator terminal is subjected to a three-phase short-circuit fault. The results have shown the proposed method and models are correct and valid.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have