Abstract
In this paper, a detailed mathematical analysis process of the voltage-source parallel resonant (VSPR) class E/F3 inverter at 50% duty ratio is proposed. Combining the advantages of VSPR class E and F inverters, the performance of the proposed inverter can be improved greatly compared to the traditional. The transistor in the VSPR class E/F3 inverter is satisfied with zero-voltage switching(ZVS) and zero-voltage derivative switching(ZVDS) conditions. Moreover, two design freedoms can be obtained and the proposed analysis process is based on them, which can provide more flexible selections. Finally, a VSPR class E/F3 inverter is fabricated and the experiment is carried out. The measured normalized peak transistor voltage decreases by 25.6%. The output power reaches 5.06 W, and the efficiency reaches 93.75%. The measured results are well agreed with the theoretical and simulated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: AEUE - International Journal of Electronics and Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.