Abstract

Two different CMOS implementations of the Manchester carry-skip adder are analyzed using the RC timing model, which provides a unified way of analyzing both CMOS circuits and interconnect. Based on the RC timing model, the authors develop efficient polynomial algorithms to determine near-optimal (in latency) as well as optimal block sizes for the one-level manchester adder with variable carry-skip. An analysis shows that the carry-skip delay in a Manchester adder block is linearly proportional to the block size. The approach provides a general paradigm for analysis and design, applicable to different models of ripple-propagation and carry skip.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.