Abstract

We consider the problem of determining the optimal block (or subsample) size for a spatial subsampling method for spatial processes observed on regular grids. We derive expansions for the mean square error of the subsampling variance estimator, which yields an expression for the theoretically optimal block size. The optimal block size is shown to depend in an intricate way on the geometry of the spatial sampling region as well as characteristics of the underlying random field. Final expressions for the optimal block size make use of some nontrivial estimates of lattice point counts in shifts of convex sets. Optimal block sizes are computed for sampling regions of a number of commonly encountered shapes. Numerical studies are performed to compare subsampling methods as well as procedures for estimating the theoretically best block size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.