Abstract

In this paper, a W-band single pole single throw (SPST) switch based on a novel PIN diode model is presented. The PIN diode is modeled using a full-wave electromagnetic (EM) simulator and its parasitic parameters under both forward and reverse bias states are described by a T-network. By this approach, the measurement-based model, which is usually a must for high performance switch design, is no longer necessary. A compensation structure is optimized to obtain a high isolation of the switch. Accordingly, a W-band SPST switch is designed using a full wave EM simulator. Measurement results agree very well with simulated ones. Our measurements show that the developed switch has less than 1.5 dB insertion loss under the ‘on’ state from 88 GHz to 98 GHz. Isolation greater than 30 dB over 2 GHz bandwidth and greater than 20 dB over 5 GHz bandwidth can be achieved at the center frequency of 94 GHz under the ‘off’ state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.