Abstract

According to the influence mechanism of the antenna track irregularity on the telescope pointing accuracy, the distribution of the track errors and their influence on the pointing of the Urumqi Nanshan 26 m telescope are reanalyzed after the antenna track was reformed by using the whole-body welding technology, and hereby the pointing error model is correspondingly revised. By using the moving least-squares method, the measured height errors of the antenna track plane are fitted with a closed curve, and the tilt of the antenna azimuth axis caused by the track irregularity can be determined accordingly. Comparing it with the measured deviation of the antenna azimuth axis caused by the deformation of antenna pedestal, it can be found that both deviations are strongly correlated. A new pointing error model is established in view of the gravity deformation of antenna pedestal, which includes the north-south and east-west components, as well as the antenna track irregularity. Finally, by scanning a known calibration radio source at different positions in the sky, the measured pointing errors are fitted with the new pointing error model. The result shows that the sinusoidal component of the model error can be well constrained by the new pointing correction model, indicating that the new model can reflect very well the antenna pointing error, and can amend it to a certain extend.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call