Abstract

The main purpose of engineering applications for fluid with natural and mixed convection is to control or enhance the flow motion and the heat transfer. In this paper, we use mathematical tools based on optimal control theory to show the possibility of systematically controlling natural and mixed convection flows. We consider different control mechanisms such as distributed, Dirichlet, and Neumann boundary controls. We introduce mathematical tools such as functional spaces and their norms together with bilinear and trilinear forms that are used to express the weak formulation of the partial differential equations. For each of the three different control mechanisms, we aim to study the optimal control problem from a mathematical and numerical point of view. To do so, we present the weak form of the boundary value problem in order to assure the existence of solutions. We state the optimization problem using the method of Lagrange multipliers. In this paper, we show and compare the numerical results obtained by considering these different control mechanisms with different objectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.