Abstract

Abstract A comprehensive but simple analytical model for predicting the energy loss in radial tires is presented. Using approximate structural analysis, the model relates the basic material properties and construction variables of the tire to its energy loss or rolling resistance. The formulas developed were computer-programmed, and the tire rolling resistance and its distribution among the components of a typical radial automobile tire were computed. The significant contributions to rolling resistance were from tread compression, carcass cord extension and bending, and sidewall rubber bending. Parametric studies using the computer program were carried out to obtain the trends in rolling resistance due to changes in several tire material properties and construction variables. The computations also showed the existence of locally optimum values for the tread modulus, carcass cord modulus, and carcass cord end count which minimize the tire rolling resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.