Abstract

Logical modeling of biological regulatory networks gives rise to a representation of the system's dynamics as a so-called state transition graph. Analysis of such a graph in its entirety allows for a comprehensive understanding of the functionalities and behavior of the modeled system. However, the size of the vertex set of the graph is exponential in the number of the network components making analysis costly, motivating development of reduction methods. In this paper, we present results allowing for a complete description of an asynchronous state transition graph of a Thomas network solely based on the analysis of the subgraph induced by certain extremal states. Utilizing this notion, we compare the behavior of a simple multivalued network and a corresponding Boolean network and analyze the conservation of dynamical properties between them. Understanding the relation between such coarser and finer models is a necessary step toward meaningful network reduction as well as model refinement methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call