Abstract

This brief analyzes the effect of capacitor variation on the design of high-resolution nonbinary-weighted successive-approximation-register analog-to-digital converters in terms of radix, conversion steps, and accuracy. Moreover, the limitation caused by the one-side redundancy of the nonbinary-weighted network is addressed and a corresponding solution with a mathematical derivation is provided. In order to relax the mismatch requirement on the capacitor sizing while still ensuring enough linearity, a bottom-up weight calibration technique accounting for noise and offset errors is proposed, and its effectiveness is demonstrated. This calibration approach can be easily incorporated into a charge-redistribution converter without modifying its main architecture and conversion sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.