Abstract
We present a system to represent and discover computational models to capture data in psychology. The system uses a Theory Representation Language to define the space of possible models. This space is then searched using genetic programming (GP), to discover models which best fit the experimental data. The aim of our semi-automated system is to analyse psychological data and develop explanations of underlying processes. Some of the challenges include: capturing the psychological experiment and data in a way suitable for modelling, controlling the kinds of models that the GP system may develop, and interpreting the final results. We discuss our current approach to all three challenges, and provide results from two different examples, including delayed-match-to-sample and visual attention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.