Abstract
The smart city integrating the smart grid as an integral part of it to guarantee the ever-increasing electricity demand. After the recent outbreak of the COVID-19 pandemic, the socioeconomic severances affecting total levels of electricity demand, price, and usage trends. These unanticipated changes introducing new uncertainties in short-term demand forecasting since its result depends on the recent usage as an input variable. Addressing this challenging situation, this paper proposes an electricity demand and price forecast model based on the LSTM Deep Learning method considering the recent demand trends. Real electricity market data from the Australian Energy Market Operator (AEMO) is used to validate the effectiveness of the proposed model and elaborated with two scenarios to get a wider context of the pandemic impact. Exploratory data analyses results show hourly electricity demand and price reductions throughout the pandemic weeks, especially during peak hours of 8 am- 12 noon and 6 pm–10 pm. Electricity demand and price has been dropped by 3% and 42% respectively on average. However, overall usage patterns have not changed significantly compared to the same period last year. The predictive accuracy of the proposed model is quite effective with an acceptably smaller error despite trend change phenomena triggered by the pandemic. The model performance is comprehensively compared with a few conventional forecast methods, Support Vector Machine (SVM) and Regression Tree (RT), and as a result, the performance indices RMSE and MAE have been improved using the proposed LSTM model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.