Abstract

In the smart grid (SG) environment, consumers are enabled to alter electricity consumption patterns in response to electricity prices and incentives. This results in prices that may differ from the initial price pattern. Electricity price and demand forecasting play a vital role in the reliability and sustainability of SG. Forecasting using big data has become a new hot research topic as a massive amount of data is being generated and stored in the SG environment. Electricity users, having advanced knowledge of prices and demand of electricity, can manage their load efficiently. In this paper, a recurrent neural network (RNN), long short term memory (LSTM), is used for electricity price and demand forecasting using big data. Researchers are working actively to propose new models of forecasting. These models contain a single input variable as well as multiple variables. From the literature, we observed that the use of multiple variables enhances the forecasting accuracy. Hence, our proposed model uses multiple variables as input and forecasts the future values of electricity demand and price. The hyperparameters of this algorithm are tuned using the Jaya optimization algorithm to improve the forecasting ability and increase the training mechanism of the model. Parameter tuning is necessary because the performance of a forecasting model depends on the values of these parameters. Selection of inappropriate values can result in inaccurate forecasting. So, integration of an optimization method improves the forecasting accuracy with minimum user efforts. For efficient forecasting, data is preprocessed and cleaned from missing values and outliers, using the z-score method. Furthermore, data is normalized before forecasting. The forecasting accuracy of the proposed model is evaluated using the root mean square error (RMSE) and mean absolute error (MAE). For a fair comparison, the proposed forecasting model is compared with univariate LSTM and support vector machine (SVM). The values of the performance metrics depict that the proposed model has higher accuracy than SVM and univariate LSTM.

Highlights

  • The emergence of smart grid (SG) technology has made the modern power system stable and increased its reliability

  • Electricity load and demand forecasting are inviable for the stability and efficiency of modern SG

  • The JLSTM forecasting model is proposed for the forecasting of electricity demand and price

Read more

Summary

Introduction

The emergence of smart grid (SG) technology has made the modern power system stable and increased its reliability. Entropy 2020, 22, 10 receives the information related to price and incentives and alters the demand patterns to get the benefits in terms of low monetary cost. In spite of these positive aspects of the modern grid, there is still room for improvement. The main issues of the modern grid include improvement in energy efficiency, integration of renewable energy sources (RESs), and reduced emission of harmful gases which are a serious threat to the environment These issues can be tackled by using the reliable and accurate information of future load demand, energy generation of RES, and suitable prices for upcoming intervals

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call