Abstract

Mesoporous molecular crystals have potential applications in separation and catalysis, but they are rare and hard to design because many weak interactions compete during crystallization, and most molecules have an energetic preference for close packing. Here, we combine crystal structure prediction (CSP) with structural invariants to continuously qualify the similarity between predicted crystal structures for related molecules. This allows isomorphous substitution strategies, which can be unreliable for molecular crystals, to be augmented by a priori prediction, thus leveraging the power of both approaches. We used this combined approach to discover a rare example of a low-density (0.54 g cm–3) mesoporous hydrogen-bonded framework (HOF), 3D-CageHOF-1. This structure comprises an organic cage (Cage-3-NH2) that was predicted to form kinetically trapped, low-density polymorphs via CSP. Pointwise distance distribution structural invariants revealed five predicted forms of Cage-3-NH2 that are analogous to experimentally realized porous crystals of a chemically different but geometrically similar molecule, T2. More broadly, this approach overcomes the difficulties in comparing predicted molecular crystals with varying lattice parameters, thus allowing for the systematic comparison of energy–structure landscapes for chemically dissimilar molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.