Abstract

In a dilute suspension where sinking spheroids or motile gyrotactic micro-organisms are modelled as orientable and negatively buoyant particles, we have found analytical solutions to their steady distributions under any arbitrary continuous vertical shear flow. The two-way coupling between their distribution and the vertical flow is nonlinear, enabling the uniform base state to bifurcate into a structure reminiscent of the streamers in settling spheroid suspensions and gyrotactic plumes. This bifurcation depends on a single parameter that is proportional to the average number of particles on a horizontal cross-section. In a three-dimensional axisymmetric system, the plume structure blows up when the parameter is above a threshold. We discuss how this singularity is analogous to the chemotactic collapse of a Keller–Segel model, and the significance that this analogy entails.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call