Abstract

We present and investigate an analogue model for a controllable photon geberation via the dynamical Casimir effect (DCE) in a cavity containing a degenerate optical amplifier (OPA) which is pumed by an amplitude-modulated field. The time modulation of the pump field in the model OPA system is equivalent to a periodic modulation of the cavity length, which is responsible for the generation of the Casimir radiation. By taking into account the rapidly oscillating terms of the modulation frequency, the effects of the corresponding counter-rotating terms (CRTs) on the analogue Casimir radiation emerge clearly. We find that the mean number of generated photons and their quantum statistical properties exhibit oscillatory behaviors, which are controllable through the modulation frequency as an external control parameter.We also recognize a new phenomenon, the so-called "Anti-DCE," in which pair photons can be coherently annihilated due to the time-modulated pumping. We show that the Casimir radiation exhibits quadrature squeezing, photon bunching and super-Poissonian statistics which are controllable by modulation frequency. We also calculate the power spectrum of the intracavity light field. We find that the appearance of the side bands in the spectrum is due to the presence of the CRTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call