Abstract

We propose an analog quantum simulator for the Holstein molecular-crystal model based on a superconducting circuit QED system in the dispersive regime. By varying the driving field on the superconducting resonators, one can readily access both the adiabatic and anti-adiabatic regimes of this model. Strong e-ph coupling required for small-polaron formation can also be reached. We show that small-polaron state of arbitrary quasimomentum can be generated by applying a microwave pulse to the resonators. We also show that significant squeezing in the resonator modes can be achieved in the polaron-crossover regime through a measurement-based scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.