Abstract

We present an analog version of the quantum approximate optimization algorithm suitable for current quantum annealers. The central idea of this algorithm is to optimize the schedule function, which defines the adiabatic evolution. It is achieved by choosing a suitable parametrization of the schedule function based on interpolation methods for a fixed time, with the potential to generate any function. This algorithm provides an approximate result of optimization problems that may be developed during the coherence time of current quantum annealers on their way toward quantum advantage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call