Abstract
Noisy intermediate-scale quantum (NISQ) devices are cutting-edge technology expected to demonstrate potential and advantages of quantum computing over classical computing. Its low number of qubits and imperfection from noises restrict running full-scale quantum algorithms on such devices; however, quantum advantages can still be obtained. To achieve quantum advantages from NISQ devices, the hybrid quantum-classical algorithms were introduced. Quantum approximate optimization algorithm (QAOA) is a variational hybrid algorithm, which utilizes a NISQ device as a sub-unit for specific tasks and performs most calculations on a classical computer. QAOA provides an approximate solution, with arbitrary precision as the number of operations increases, for optimization problems. In this work we investigate the possibility of applying QAOA to a clustering problem and compare its performance with the classical k-means algorithm. It turns out that the weights in graph connectivity can degrade the algorithm operation and make it more difficult to approximate the solution. We also benchmark the QAOA by comparing the approximated solutions with the exact one obtained from a classical clustering algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.