Abstract

Electrical domain equalization of chromatic and polarization mode dispersion is attractive in coherent optical communication links. Digital coherent receivers used for this purpose are based on high speed ADCs followed by DSP, which dissipate excessive amount of power and are very costly to implement. We propose analog coherent receiver to drastically reduce the power consumption, size and cost. An adaptive feed forward equalizer for 40 Gbps dual polarization quadrature phase shift keying (DP-QPSK) systems, which processes signals in analog domain itself, is demonstrated using circuit and system simulations. The equalizer, designed in 90 nm CMOS technology, consumes 450 mW of power and occupies 1.8 mm × 1.1 mm chip area. System simulations are used to show that blind equalization is also possible when this approach is used in decision directed mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.