Abstract
Coronavirus Disease 2019 or Covid-19 is a group of types of viruses that interfere with the respiratory tract associated with the seafood market that emerged in Wuhan City, Hubei Province, China at the end of 2019. The first confirmed cases of Covid-19 in Indonesia on March 2, 2020, were 2 cases and until the end of 2021, it continues to grow every day. The purpose of this study was to predict the number of confirmed cases of Covid-19 in Indonesia using the Support Vector Regression (SVR) method with linear kernel functions, radial basis functions (RBF), and polynomials. Support Vector Regression (SVR) is the application of a support vector machine (SVM) in regression cases that aims to find the dividing line in the form of the best regression function. The advantage of the SVR model is can be used on time series data, data that are not normally distributed and data that is not linear. Parameter selection for each kernel used a grid search algorithm combined with time series cross validation. The criteria used to measure the goodness of the model are MSE (Mean Square Error), MAPE (Mean Absolute Percentage Error) and R2 (Coefficient of Determination). The results of this study indicate that the best model is Support Vector Regression (SVR) with a polynomial kernel and the parameters used include Cost = 1, degree = 1, and coefficient = 0.1. The polynomial kernel SVR model produces a MAPE value of 0.4946215%, which means the model has very good predictive ability. The prediction accuracy obtained with an R2 value of 85.65011% and an MSE value of 161606.1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.