Abstract
Short-track speed skating race distances of 500, 1000, and 1500 m that last ∼40seconds to ∼2.5minutes and require a maximal intensity at speeds beyond maximal oxygen uptake (VO2max). Recently, the anaerobic speed reserve (ASR) has been applied by scientists and coaches in middle-distance sports to deepen understanding of 1- to 5-minute event performance where different physiological profiles (speed, hybrid, and endurance) can have success. World-class (women, n = 2; men, n = 3) and international-level (women, n = 4; men, n = 5) short-track speed skaters completed maximal aerobic speed and maximal skating speed tests. ASR characteristics were compared between profiles and associated with on-ice performance. World-class athletes raced at a lower %ASR in the 1000- (3.1%; large; almost certainly) and 1500-m (1.8%; large; possibly) events than international athletes. Men's and women's speed profiles operated at a higher %ASR in the 500-m than hybrid and endurance profiles, whereas in the 1500-m, endurance profiles worked at a substantially lower %ASR than hybrid and speed profiles. Women's 500-m performance is very largely associated with maximal skating speed, while women's maximal aerobic speed appears to be a key determining factor in the 1000- and 1500-m performance. World-class short-track speed skaters can be developed in speed, hybrid, and endurance profiles but achieve their performance differently by leveraging their strongest characteristics. These results show nuanced differences between men's and women's 500-, 1000- and 1500-m event performance across ASR profile that unlock new insights for individualizing athlete performance in these disciplines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Sports Physiology and Performance
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.