Abstract

The micro-alga Chlorella pyrenoidosa expresses an enzymatic activity that cleaves the 13-hydroperoxide derivatives of linoleic acid [13-hydroperoxy-9(Z),11(E)-octadecadienoic acid, 13-HPOD] and linolenic acid [13-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid, 13-HPOT] into volatile C(5) and non-volatile C(13) oxo-products. This enzymic activity initially was attributed to a hydroperoxide lyase enzyme; however, subsequent studies showed that this cleavage activity is the result of lipoxygenase activity under anaerobic conditions. Headspace analysis of the volatile products by GC/MS showed the formation of pentane when the substrate was 13-HPOD, whereas a more complex mixture of hydrocarbons was formed when 13-HPOT was the substrate. Analysis of the non-volatile cleavage products from 13-HPOD by liquid chromatography/MS indicated the formation of 13-oxo-9(Z),11(E)-tridecadienoic acid (13-OTA) along with the 13-keto-octadecadienoic acid derivative. When the substrate is 13-HPOT, liquid chromatography/MS analysis indicated the formation of 13-OTA as the major non-volatile product. Aldehyde dehydrogenase (AldDH) oxidizes 13-OTA to an omega-dicarboxylic acid, whereas alcohol dehydrogenase (ADH) reduces 13-OTA to an omega-hydroxy carboxylic acid. AldDH and ADH require the oxidized (NAD(+)) and reduced (NADH) forms of the cofactor NAD, respectively. By combining the action of AldDH and ADH into a continuous cofactor-recycling process, it is possible to simultaneously convert 13-OTA to the corresponding omega-dicarboxylic acid and omega-hydroxy carboxylic acid derivatives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call