Abstract

The mechanism responsible for the initial steps in the anaerobic degradation of trans-cinnamate and omega-phenylalkane carboxylates by the purple non-sulphur photosynthetic bacterium Rhodopseudomonas palustris was investigated. Phenylacetate did not support growth and there was a marked CO2 dependence for growth on acids with greater side-chain lengths. Here, CO2 was presumably acting as a redox sink for the disposal of excess reducing equivalents. Growth on benzoate did not require the addition of exogenous CO2. Aromatic acids with an odd number of side-chain carbon atoms (3-phenylpropionate, 5-phenylvalerate, 7-phenylheptanoate) gave greater apparent molar growth yields than those with an even number of side-chain carbon atoms (4-phenylbutyrate, 6-phenylhexanoate, 8-phenyloctanoate). HPLC analysis revealed that phenylacetate accumulated and persisted in the culture medium during growth on these latter compounds. Cinnamate and benzoate transiently accumulated in the culture medium during growth on 3-phenylpropionate, and benzoate alone accumulated transiently during the course of trans-cinnamate degradation. The transient accumulation of 4-phenyl-2-butenoic acid occurred during growth on 4-phenylbutyrate, and phenylacetate accumulated to a 1:1 molar stoichiometry with the initial 4-phenylbutyrate concentration. It is proposed that the initial steps in the anaerobic degradation of trans-cinnamate and the group of acids from 3-phenylpropionate to 8-phenyloctanoate involves beta-oxidation of the side-chain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call