Abstract

Significant microbial removal of highly chlorinated polychlorinated biphenyls (PCBs) requires the cooperation of anaerobic and aerobic bacteria. During the sequencing process of anaerobic dechlorination and aerobic degradation of PCBs, aerobic degrading bacteria have to undergo anaerobic stress. However, the survival strategy of aerobic degrading bacteria under anaerobic condition is not well-understood. In this study, the culturable cells of Rhodococcus biphenylivorans TG9 decreased from 108 CFU/mL to values below the detection limit after 60 days of anaerobic stress while the viable cells remained 105–106 cells/mL, indicating that anaerobic condition induced TG9 entering into the viable but nonculturable (VBNC) state. Cell resuscitation was observed when oxygen was supplied further confirming the VBNC state of TG9. The results of single-cell Raman spectroscopy combined with heavy water indicated the significant decrease of metabolic activity after TG9 entering into the VBNC state. Additionally, the degradation ability of TG9 in the VBNC state was also significantly reduced, while it recovered after resuscitation. Our research proved that entering into the VBNC state is a survival strategy of TG9 under anaerobic conditions, and the limited culturability and degrading capacity could be overcome by resuscitation. The present study provides new insights for improving the remediation efficiency of PCBs contamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call