Abstract

Anaerobic biodegradation of pentachlorophenol (PCP) in a contaminated soil from a wood-treating industrial site was studied in soil slurry microcosms inoculated with a PCP-degrading methanogenic consortium. When the microcosms containing 10%-40% (w/v) soil were inoculated with the consortium, more than 90% of the PCP was removed in less than 30 days at 29 degrees C. Less-chlorinated phenols, mainly 3-chlorophenol were slowly degraded and accumulated in the cultures. Addition of glucose and sodium formate to the microcosms was not necessary, suggesting that the organic compounds in the soil can sustain the dechlorinating activity. Inoculation of Desulfitobacterium frappieri strain PCP-1 along with a 3-chlorophenol-degrading consortium in the microcosms also resulted in the rapid dechlorination of PCP and the slow degradation of 3-chlorophenol. Competitive polymerase chain reaction experiments showed that PCP-1 was present at the same level throughout the 21-day biotreatment. D. frappieri, strain PCP-1, inoculated into the soil microcosms, was able to remove PCP from soil containing up to 200 mg PCP/kg soil. However, reinoculation of the strain was necessary to achieve more than 95% PCP removal with a concentration of 300 mg and 500 mg PCP/kg soil. These results demonstrate that D. frappieri strain PCP-1 can be used effectively to dechlorinate PCP to 3-chlorophenol in contaminated soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call