Abstract

In sparse empirical risk minimization (ERM) models, when sensitive personal data are used, e.g., genetic, healthcare, and financial data, it is crucial to preserve the differential privacy (DP) in training. In many applications, the information (i.e., features) of an individual is held by different organizations, which give rise to the prevalent yet challenging setting of the featurewise distributed multiparty model training. Such a setting is also beneficial to the scalability when the number of features exceeds the computation and storage capacity of a single node. However, existing private sparse optimizations are limited to centralized and samplewise distributed datasets only. In this article, we develop a differentially private algorithm for the sparse ERM model training under the featurewise distributed datasets setting. Our algorithm comes with guaranteed DP, nearly optimal utility, and reduced uplink communication complexity. Accordingly, we present a more generalized convergence analysis for block-coordinate Frank-Wolfe (BCFW) under arbitrary sampling (denoted as BCFW-AS in short), which significantly extends the known convergence results that apply to two specific sampling distributions only. To further reduce the uplink communication cost, we design an active private feature sharing scheme, which is new in both design and analysis of BCFW, to guarantee the convergence of communicating Johnson-Lindenstrauss transformed features. Empirical studies justify the new convergence as well as the nearly optimal utility theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.