Abstract
The inappropriate use of the organophosphorus pesticide chlorpyrifos (CPF) in agricultural production could be harmful to the environment and non-target organisms. Here, we prepared a nano-fluorescent probe with phenolic function based on covalently coupled rhodamine derivatives (RDP) of upconverted nano-particles (UCNPs) for trace detection of chlorpyrifos. Due to the fluorescence resonance energy transfer (FRET) effect in the system, the fluorescence of UCNPs is quenched by RDP. The phenolic-functional RDP is converted to the spironolactone form when it captures chlorpyrifos. This structural shift prevents the FRET effect in the system and allows the fluorescence of UCNPs to be restored. In addition, the 980nm excitement conditions of UCNPs will also avoid interference from non-target fluorescent backgrounds. This work has obvious advantages in terms of selectivity and sensitivity, which can be widely applied to the rapid analysis of chlorpyrifos residues in food samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.