Abstract

At present, most fluorescent materials that can be used for optical temperature measurement exhibit poor thermochromic performance, which limits their applications. In this study, the phosphor Ba3In(PO4)3:Er/Yb was synthesized with a high doping concentration of Yb3+, and it emitted composition- and temperature-induced wide color gamut up-conversion luminescence from red to green. Four modes of fluorescence thermometry can be realized in the temperature range of 303-603 K, which is based on the ratio of fluorescence intensity between thermally coupled energy levels and non-thermally coupled energy levels, color coordinate shift, and fluorescence decay lifetime, respectively. The highest Sr value obtained was 0.977% K-1. Taking advantage of the fact that temperature can significantly change the luminous color of the phosphor Ba3In(PO4)3:0.02Er3+/0.05Yb3+, we demonstrated 'temperature mapping' on a smooth metal surface with multiple optical encryptions. These results indicate that the Ba3In(PO4)3:Er/Yb phosphor is an excellent fluorescent material for thermal imaging and has great application potential in temperature visualization measurement and optical encryption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.