Abstract

The vibronic coupling model of Köuppel, Domcke, and Cederbaum in one dimension is introduced as a means to estimate the effects of electronic nonadiabaticity on the vibrational energy levels of molecules that exhibit vibronic coupling. For the BNB molecule, the nonadiabatic contribution to the nominal fundamental vibrational energy of the antisymmetric stretching mode is approximately -80 cm(-1). The surprisingly large effect for this mode, which corresponds to an adiabatic potential that is essentially flat near the minimum due to the vibronic interaction, is contrasted with another model system that also exhibits a flat potential (precisely, a vanishing quadratic force constant) but has a significantly larger gap between interacting electronic states. For the latter case, the nonadiabatic contribution to the level energies is about two orders of magnitude smaller even though the effect on the potential is qualitatively identical. A simple analysis shows that significant nonadiabatic corrections to energy levels should occur only when the affected vibrational frequency is large enough to be of comparable magnitude to the energy gap involved in the coupling. The results provide evidence that nonadiabatic corrections should be given as much weight as issues such as high-level electron correlation, relativistic corrections, etc., in quantum chemical calculations of energy levels for radicals with close-lying and strongly coupled electronic states even in cases where conical intersections are not obviously involved. The same can be said for high-accuracy thermochemical studies, as the zero-point vibrational energy of the BNB example contains a nonadiabatic contribution of approximately -70 cm(-1) (-0.9 kJ mol(-1)).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call