Abstract

Many photoinduced excited states' relaxation processes and chemical reactions occur at interfaces and surfaces, including charge transfer, energy transfer, proton transfer, proton-coupled electron transfer, configurational dynamics, conical intersections, etc. Of them, interactions of electronic and vibrational motions, namely, vibronic couplings, are the main determining factors for the relaxation processes or reaction pathways. However, time-resolved electronic-vibrational spectroscopy for interfaces and surfaces is lacking. Here we develop interface/surface-specific two-dimensional electronic-vibrational sum frequency generation spectroscopy (2D-EVSFG) for time-dependent vibronic coupling of excited states at interfaces and surfaces. We further demonstrate the fourth-order technique by investigating vibronic coupling, solvent correlation, and time evolution of the coupling for photoexcited interface-active molecules, crystal violet (CV), at the air/water interface as an example. The two vibronic absorption peaks for CV molecules at the interface from the 2D-EVSFG experiments were found to be more prominent than their counterparts in bulk from 2D-EV. Quantitative analysis of the vibronic peaks in 2D-EVSFG suggested that a non-Condon process participates in the photoexcitation of CV at the interface. We further reveal vibrational solvent coupling for the zeroth level on the electronic state with respect to that on the ground state, which is directly related to the magnitude of its change in solvent reorganization energy. The change in the solvent reorganization energy at the interface is much smaller than that in bulk methanol. Time-dependent center line slopes (CLSs) of 2D-EVSFG also showed that kinetic behaviors of CV at the air/water interface are significantly different from those in bulk methanol. Our ultrafast 2D-EVSFG experiments not only offer vibrational information on both excited states and the ground state as compared with the traditional doubly resonant sum frequency generation and electronic-vibrational coupling but also provide vibronic coupling, dynamical solvent effects, and time evolution of vibronic coupling at interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call