Abstract
BackgroundDeformable image registration is crucial for multiple radiation therapy applications. Fast registration of computed tomography (CT) lung images is challenging because of the large and nonlinear deformation between inspiration and expiration. With advancements in deep learning techniques, learning-based registration methods are considered efficient alternatives to traditional methods in terms of accuracy and computational cost. MethodIn this study, an unsupervised lung registration network (LRN) with cycle-consistent training is proposed to align two acquired CT-derived lung datasets during breath-holds at inspiratory and expiratory levels without utilizing any ground-truth registration results. Generally, the LRN model uses three loss functions: image similarity, regularization, and Jacobian determinant. Here, LRN was trained on the CT datasets of 705 subjects and tested using 10 pairs of public CT DIR-Lab datasets. Furthermore, to evaluate the effectiveness of the registration technique, target registration errors (TREs) of the LRN model were compared with those of the conventional algorithm (sum of squared tissue volume difference; SSTVD) and a state-of-the-art unsupervised registration method (VoxelMorph). ResultsThe results showed that the LRN with an average TRE of 1.78 ± 1.56 mm outperformed VoxelMorph with an average TRE of 2.43 ± 2.43 mm, which is comparable to that of SSTVD with an average TRE of 1.66 ± 1.49 mm. In addition, estimating the displacement vector field without any folding voxel consumed less than 2 s, demonstrating the superiority of the learning-based method with respect to fiducial marker tracking and the overall soft tissue alignment with a nearly real-time speed. ConclusionsTherefore, this proposed method shows significant potential for use in time-sensitive pulmonary studies, such as lung motion tracking and image-guided surgery.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have