Abstract

A mathematical model has been developed for pulsatile flow of blood through a tapered arterial stenosis in a porous medium under the influence of non-uniform magnetic field and periodic body acceleration treating blood as micropolar fluid carrying iron oxide nanoparticles. The governing equations of the system are solved numerically using finite difference schemes. The effects of stenotic height, taper angle, micropolar parameters, magnetic field, porosity, pulsatility, and magnetic nanoparticles on the flow of blood are analysed, and the results are represented graphically. It is significant to note that the flow parameters such as wall shear stress and flow resistance increase with increase in stenotic height, tapering parameter, magnetic field, pulsatile Reynolds number, time period, particle concentration, and particle mass parameters. Wall shear stress decreases with the increasing values of coupling number and it shows opposite behaviour in the case of flow resistance. Also increase in Darcy number leads to decrease in wall shear stress and flow resistance. The significance of treating blood as micropolar fluid is that the rotation of particles is taken into account. Cardiovascular diseases occur mainly due to abnormal blood flow in the arteries. To normalize the blood flow in the arteries, analysis of parameters involved in the study is essential. Hence, the present study has various applications in biomedical sciences. The effects of nanoparticles on blood flow analysed in the study have significant applications in delivery of drugs for treating cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call