Abstract

We aim to approximate contrast problems by means of a numerical scheme which does not require that the computational mesh conforms with the discontinuity between coefficients. We focus on the approximation of diffusion–reaction equations in the framework of finite elements. In order to improve the unsatisfactory behavior of Lagrangian elements for this particular problem, we resort to an enriched approximation space, which involves elements cut by the interface. Firstly, we analyze the H 1 -stability of the finite element space with respect to the position of the interface. This analysis, applied to the conditioning of the discrete system of equations, shows that the scheme may be ill posed for some configurations of the interface. Secondly, we propose a stabilization strategy, based on a scaling technique, which restores the standard properties of a Lagrangian finite element space and results to be very easily implemented. We also address the behavior of the scheme with respect to large contrast problems ending up with a choice of Nitscheʼs penalty terms such that the extended finite element scheme with penalty is robust for the worst case among small sub-elements and large contrast problems. The theoretical results are finally illustrated by means of numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.