Abstract

Wireless rechargeable sensor networks (WRSN) have attracted considerable attention in recent years due to the constant energy supply for battery-powered sensor nodes. However, current technologies only enable the mobile charger to replenish energy for one single node at a time. This method has poor scalability and is not suitable for large-scale WRSNs. Recently, wireless energy transfer technology based on multi-hop energy transfer has made great progress. It provides fundamental support to alleviate the scalability problem. In this paper, the node energy replenishment problem is formulated into an optimization problem. The optimization objective is to minimize the number of non-functional nodes. We propose the uneven cluster-based mobile charging (UCMC) algorithm for WRSNs. An uneven clustering scheme and a novel charging path planning scheme are incorporated in the UCMC algorithm. The simulation results verify that the proposed algorithm can achieve energy balance, reduce the number of dead nodes, and prolong the network lifetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call