Abstract

Low Density Parity Check (LDPC) codes are among the most popular channel codes used nowadays because of their ability to achieve near channel capacity performances. However, with the ever-increasing demand for reliable transmission of data at higher data rates, there is a need to narrow down the gap between the performance of LDPC codes and the channel capacity. LDPC codes and Quadrature Amplitude Modulation (QAM) have been widely deployed in wireless communication standards such as the IEEE 802.11n and Digital Video Broadcasting-Second Generation Terrestrial (DVB-T2). Recently, several Unequal Error Protection (UEP) schemes have been used to enhance the performance of LDPC codes. In this paper an UEP scheme is proposed for Non- Binary LDPC codes with QAM. The scheme uses the statistical distribution of the source symbols to obtain a more efficient statistical QAM constellation. Additionally, it uses the degree distribution of the nodes of the LDPC codeword to achieve prioritized QAM mapping. Simulations revealed that the proposed scheme can provide Eb/N0 gains of up to 0.78 dB and 1.24 dB with 16-QAM and 64-QAM respectively in the range BER?10-2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.