Abstract

A high-order compact finite difference method is presented for solving the three-dimensional (3D) time-fractional convection–diffusion equation (of order α∈(1,2)). The original equation is first transformed to a fractional diffusion-wave equation, then using fourth-order Padé approximation for spatial derivatives and the center difference method for time derivative respectively, a fully discrete implicit compact scheme is obtained. Furthermore, based on different splitting terms, three unconditionally stable ADI compact schemes with optimal convergence order are developed respectively. The resulting schemes in each ADI solution step corresponding to a strictly diagonally dominant matrix equation can be solved using the 1D tridiagonal Thomas algorithm with a considerable saving in computing time. Numerical experiments show that these schemes can significantly improve the time accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.