Abstract

The phase field crystal equation has been recently put forward as a model for microstructure evolution of two-phase systems on atomic length and diffusive time scales. The theory is cast in terms of an evolutive nonlinear sixth-order partial differential equation for the interatomic density that locally minimizes an energy functional with the constraint of mass conservation. Here we propose a new numerical algorithm for the phase field crystal equation that is second-order time-accurate and unconditionally stable with respect to the energy functional. We present several numerical examples in two and three dimensions dealing with crystal growth in a supercooled liquid and crack propagation in a ductile material. These examples show the effectiveness of our new algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.