Abstract

Network topology inference is a fundamental problem in many applications of network science, such as locating the source of fake news, brain connectivity networks detection, etc. Many real-world situations suffer from a critical problem that only a limited part of observed nodes are available. This letter considers the problem of network topology inference under the framework of partial observability. Based on the vector autoregressive model, we propose a novel unbiased estimator for the symmetric network topology with the Gaussian noise and the Laplacian combination rule. Theoretically, we prove that it converges to the network combination matrix in probability. Furthermore, by utilizing the Gaussian mixture model algorithm, an effective algorithm called network inference Gauss algorithm is developed to infer the network structure. Finally, compared with the state-of-the-art methods, numerical experiments demonstrate the proposed algorithm enjoys better performance in the case of small sample sizes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.