Abstract

PurposeCompact and wideband antennas are the need of modern wireless systems that preferably work with compact, low-profile and easy-to-install devices that provide a wider coverage of operating frequencies. The purpose of this paper is to propose a novel compact and ultrawideband (UWB) microstrip patch antenna intended for high frequency wireless applications.Design/methodology/approachA square microstrip patch antenna was initially modeled on finite element method-based electromagnetic simulation tool high frequency structure simulator. It was then loaded with a rectangular slit and Koch snowflake-shaped fractal notches for bandwidth enhancement. The fabricated prototype was tested by using vector network analyzer from Agilent Technologies, N5247A, Santa Clara, California, United States (US).FindingsThe designed Koch fractal patch antenna is highly compact with dimensions of 10 × 10 mm only and possesses UWB characteristics with multiple resonances in the operating band. The −10 dB measured impedance bandwidth was observed to be approximately 13.65 GHz in the frequency range (23.20–36.85 GHz).Originality/valueOwing to its simple and compact structure, positive and substantial gain values, high radiation efficiency and stable radiation patterns throughout the frequency band of interest, the proposed antenna is a suitable candidate for high frequency wireless applications in the K (18–27 GHz) and Ka (26.5–40 GHz) microwave bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call