Abstract
We develop and analyze an ultraweak variational formulation of the Reissner–Mindlin plate bending model both for the clamped and the soft simply supported cases. We prove well-posedness of the formulation, uniformly with respect to the plate thickness t. We also prove weak convergence of the Reissner–Mindlin solution to the solution of the corresponding Kirchhoff–Love model when $$t\rightarrow 0$$. Based on the ultraweak formulation, we introduce a discretization of the discontinuous Petrov–Galerkin type with optimal test functions (DPG) and prove its uniform quasi-optimal convergence. Our theory covers the case of non-convex polygonal plates. A numerical experiment for some smooth model solutions with fixed load confirms that our scheme is locking free.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have