Abstract

Electrolytic ablation (EA) is a promising nonthermal tumor ablation technique that destroys malignant cells through induction of a locoregional pH change. EA is typically performed by inserting needle electrodes inside the tumor followed by application of direct current (DC), thus inducing electrolysis and creating localized pH changes around the electrodes. In this paper, we report an ultrasonically powered implantable EA microprobe that may increase the clinical relevance of EA by allowing wireless control over device operation (capability to remotely turn the device on and off) and providing flexibility in treatment options (easier to administer fractionated doses over a longer period). The wireless EA microprobe consists of a millimeter-sized piezoelectric ultrasonic receiver, a rectifier circuit, and a pair of platinum electrodes (overall size is 9 × 3 × 2 mm3). Once implanted through a minimally invasive procedure, the microprobe can stay within a solid tumor and be repeatedly used as needed. Ultrasonic power allows for efficient power delivery to mm-scale devices implanted deep within soft tissues of the body. The microprobe is capable of producing a direct current of 90 µA at a voltage of 5 V across the electrodes under low-intensity ultrasound (~200 mW/cm2). The DC power creates acidic (pH < 2) and alkaline (pH > 12.9) regions around the anode and the cathode, respectively. The pH change, measured using tissue-mimicking agarose gel, extends to 0.8 cm3 in volume within an hour at an expansion rate of 0.5 mm3/min. The microprobe-mediated EA ablative capability is demonstrated in vitro in cancer cells and ex vivo in mouse liver.

Highlights

  • Surgical resection remains the first therapeutic option for early-stage solid tumors

  • The described microprobe requires initial insertion using a biopsy needle or a trocar, once in place, it can be remotely reactivated if further treatments are necessary without repeated insertion of needle electrodes

  • The primary effect of electrolysis is the generation of hydrogen and hydroxide ions[8]

Read more

Summary

Introduction

Surgical resection remains the first therapeutic option for early-stage solid tumors. The microprobe converts incoming ultrasonic waves into a direct electrical current and induces electrolysis through a pair of platinum electrodes in the tumor. Ultrasonic power for the microprobe was characterized in terms of angular alignment sensitivity between a transmitter and a receiver, current-voltage (I–V) characteristics, and the field of operation.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.