Abstract

Minimal invasive ablation therapy is an emerging treatment that enables locoregional tumor removal. One promising modality is electrolytic ablation therapy which induces cell death through local delivery of low-energy direct current. However, the realization of electrolytic ablation in the clinic has hampered by not-well-defined efficacy and mechanism. In this paper, we introduce a Multi-Organoid-on-a-Chip (MOC) that enables the modeling of electrolytic ablation therapy. The evaluated efficacy of electrolytic ablation on pancreatic cancer organoids revealed a 0.14 %/min cell death, while the side effects on neighboring, normal liver organoids inflicted minimal cell death (0.001 %/min). The in vitro results demonstrate a mechanism of the cell death is mainly due to locoregional pH change, and side effects due to byproducts of the electrochemical reaction are minimal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call