Abstract
ABSTRACT An ultrasonic Rayleigh wave detection method is proposed to determine the geometrical characteristics of subsurface small-scale fractures in concrete. A three-dimensional observation system, including an inclined wedge ultrasonic device, is used to obtain the Rayleigh wave wide-angle data to exhibit the azimuth-dependent scattered wave field. The anisotropic characteristics of Rayleigh wave transmission coefficient are used to determine the distribution range and dip angle of fractures. Fracture models in concrete with different dip angles are designed, and the dip angle is correlated with the degree of attenuation (transmission coefficient) anisotropy. The transmission coefficient characteristics are presented in a random observing system. A focusing approach can be adopted to distinguish the subsurface fracture and to verify the reliability and flexibility of the surface wave approach in practice. The tendencies of experimental results are consistent with patterns obtained from numerical simulation. The proposed method has important application prospects for the non-destructive testing of complex invisible fractures in concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.