Abstract
We present a well-posed ultra-weak space-time variational formulation for the time-dependent version of the linear Schrödinger equation with an instationary Hamiltonian. We prove optimal inf-sup stability and introduce a space-time Petrov-Galerkin discretization with optimal discrete inf-sup stability.We show norm-preservation of the ultra-weak formulation. The inf-sup optimal Petrov-Galerkin discretization is shown to be asymptotically norm-preserving, where the deviation is shown to be in the order of the discretization. In addition, we introduce a Galerkin discretization, which has suboptimal inf-sup stability but exact norm-preservation.Numerical experiments underline the performance of the ultra-weak space-time variational formulation, especially for non-smooth initial data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.